Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 905826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756042

RESUMO

Tsetse flies have socioeconomic significance as the obligate vector of multiple Trypanosoma parasites, the causative agents of Human and Animal African Trypanosomiases. Like many animals subsisting on a limited diet, microbial symbiosis is key to supplementing nutrient deficiencies necessary for metabolic, reproductive, and immune functions. Extensive studies on the microbiota in parallel to tsetse biology have unraveled the many dependencies partners have for one another. But far less is known mechanistically on how products are swapped between partners and how these metabolic exchanges are regulated, especially to address changing physiological needs. More specifically, how do metabolites contributed by one partner get to the right place at the right time and in the right amounts to the other partner? Epigenetics is the study of molecules and mechanisms that regulate the inheritance, gene activity and expression of traits that are not due to DNA sequence alone. The roles that epigenetics provide as a mechanistic link between host phenotype, metabolism and microbiota (both in composition and activity) is relatively unknown and represents a frontier of exploration. Here, we take a closer look at blood feeding insects with emphasis on the tsetse fly, to specifically propose roles for microRNAs (miRNA) and DNA methylation, in maintaining insect-microbiota functional homeostasis. We provide empirical details to addressing these hypotheses and advancing these studies. Deciphering how microbiota and host activity are harmonized may foster multiple applications toward manipulating host health, including identifying novel targets for innovative vector control strategies to counter insidious pests such as tsetse.

2.
BMC Genomics ; 22(1): 400, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058984

RESUMO

BACKGROUND: Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. RESULTS: An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, 'translation, ribosomal structure and biogenesis' followed by 'coenzyme transport and metabolism' were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. CONCLUSIONS: These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies.


Assuntos
Moscas Tsé-Tsé , Animais , Enterobacteriaceae/genética , Humanos , Transcriptoma , Moscas Tsé-Tsé/genética , Wigglesworthia/genética
3.
PLoS Genet ; 16(8): e1008992, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797092

RESUMO

Bacterial virulence factors facilitate host colonization and set the stage for the evolution of parasitic and mutualistic interactions. The Sodalis-allied clade of bacteria exhibit striking diversity in the range of both plant and animal feeding insects they inhabit, suggesting the appropriation of universal molecular mechanisms that facilitate establishment. Here, we report on the infection of the tsetse fly by free-living Sodalis praecaptivus, a close relative of many Sodalis-allied symbionts. Key genes involved in quorum sensing, including the homoserine lactone synthase (ypeI) and response regulators (yenR and ypeR) are integral for the benign colonization of S. praecaptivus. Mutants lacking ypeI, yenR and ypeR compromised tsetse survival as a consequence of their inability to repress virulence. Genes under quorum sensing, including homologs of the binary insecticidal toxin PirAB and a putative symbiosis-promoting factor CpmAJ, demonstrated negative and positive impacts, respectively, on tsetse survival. Taken together with results obtained from experiments involving weevils, this work shows that quorum sensing virulence suppression plays an integral role in facilitating the establishment of Sodalis-allied symbionts in diverse insect hosts. This knowledge contributes to the understanding of the early evolutionary steps involved in the formation of insect-bacterial symbiosis. Further, despite having no established history of interaction with tsetse, S. praecaptivus can infect reproductive tissues, enabling vertical transmission through adenotrophic viviparity within a single host generation. This creates an option for the use of S. praecaptivus in the biocontrol of insect disease vectors via paratransgenesis.


Assuntos
Percepção de Quorum/genética , Moscas Tsé-Tsé/genética , Fatores de Virulência/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/biossíntese , 4-Butirolactona/genética , Animais , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Humanos , Insetos Vetores/genética , Insetos Vetores/microbiologia , Insetos/genética , Simbiose/genética , Moscas Tsé-Tsé/microbiologia
4.
Genome Biol Evol ; 9(9): 2276-2291, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934375

RESUMO

Tsetse flies (Diptera: Glossinidae) have medical significance as the obligate vectors of African trypanosomes. In addition, tsetse harbor a simple gut microbiota. A predominant gut microbiota member, the Gammaproteobacterium Wigglesworthia spp., has coevolved with tsetse for a significant portion of Glossina radiation proving critical to tsetse fitness. Although multiple roles have been described for Wigglesworthia within colony flies, little research has been dedicated towards functional characterization within wild tsetse. Here, dual RNA-Seq was performed to characterize the tsetse-Wigglesworthia symbiosis within flies captured in Nguruman, Kenya. A significant correlation in Gene Ontology (GO) distribution between tsetse and Wigglesworthia was observed, with homogeneous enrichment in metabolic and transport categories, likely supporting a hallmark of the symbiosis-bidirectional metabolic exchange. Within field flies, highly transcribed Wigglesworthia loci included those involved in B vitamin synthesis and in substrate translocation, including amino acid transporters and multidrug efflux pumps, providing a molecular means for interaction. The universal expression of several Wigglesworthia and G. pallidipes orthologs, putatively involved in nutrient provisioning and resource allocation, was confirmed in sister tsetse species. These transcriptional profiles varied through host age and mating status likely addressing varying symbiont demands and also confirming their global importance within Glossina. This study, not only supports symbiont nutrient provisioning roles, but also serves as a foundation for insight into novel roles and molecular mechanisms associated with vector-microbiota interactions. The role of symbiont B vitamin provisioning towards impacting host epigenetics is discussed. Knowledge of vector-microbiota interactions may lead to the discovery of novel targets in pest control.


Assuntos
Microbiota , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/genética , Animais , Genes Bacterianos , Quênia , Filogenia , Reprodução , Simbiose , Transcriptoma , Moscas Tsé-Tsé/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...